

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0352 of 26 July 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer injection system FIS VL

Bonded fastener for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

26 pages including 3 annexes which form an integral part of this assessment

330499-01-0601, Edition 04/2020

ETA-10/0352 issued on 13 May 2020

European Technical Assessment ETA-10/0352 English translation prepared by DIBt

Page 2 of 26 | 26 July 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-10/0352

Page 3 of 26 | 26 July 2023

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "fischer injection system FIS VL" is a bonded fastener consisting of a cartridge with injection mortar fischer FIS VL, fischer FIS VL High Speed or fischer FIS VL Low Speed and a steel element according to Annex A4.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 to B 5, C 1 to C 6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 4
Displacements under short-term and long-term loading	See Annex C 7 and C 8
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-10/0352 English translation prepared by DIBt

Page 4 of 26 | 26 July 2023

4 Assessment and verification of constancy of performance (AVCP) system applied, with

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

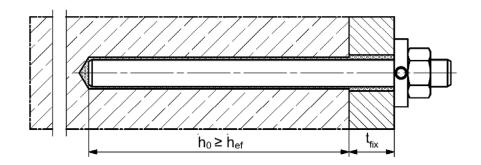
reference to its legal base

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 26 July 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock


Head of Section

Stiller

English translation prepared by DIBt Installation conditions part 1 fischer anchor rod FIS A / RG and standard threaded rod Pre-positioned installation $h_0 \ge h_{ef}$ Push through installation (annular gap filled with mortar) $h_0 \ge h_{ef}$ $\mathsf{t}_{\mathsf{fix}}$

Pre-positioned or push through installation with subsequently injected fischer filling disc (annular gap filled with mortar)

Figures not to scale

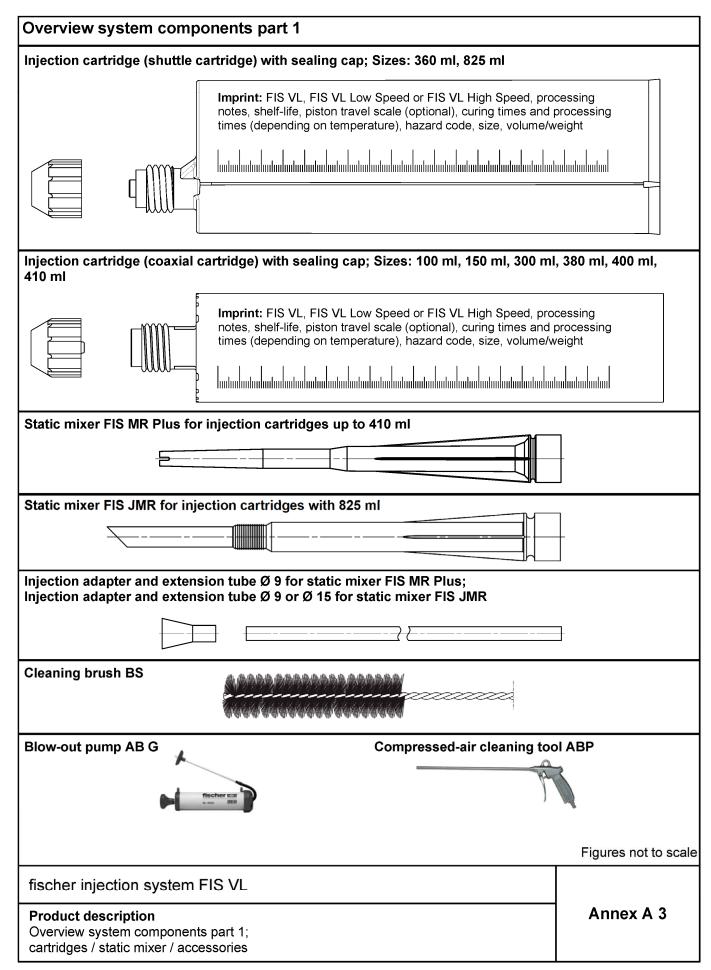
 h_0 = drill hole depth

hef = effective embedment depth

 t_{fix} = thickness of fixture

fischer injection system FIS VL

Product description


Installation conditions part 1

Annex A 1

Installation conditions part 2 fischer internal threaded anchor RG M I Pre-positioned installation $h_0 \ge h_{ef}$ Pre-positioned installation with subsequently injected fischer filling disc (annular gap filled with mortar) $h_0 \ge h_{ef}$ Reinforcing bar $h_0 \ge h_{ef}$ Figures not to scale h_0 = drill hole depth hef = effective embedment depth t_{fix} = thickness of fixture fischer injection system FIS VL Annex A 2 **Product description** Installation conditions part 2

Overview system components part 2 fischer anchor rod Size: M6, M8, M10, M12, M16, M20, M24, M27, M30 fischer internal threaded anchor RG M I Size: M8, M10, M12, M16, M20 Screw / threaded rod / washer / hexagon nut fischer filling disc with injection adapter Reinforcing bar Nominal diameter: \$\phi 8\$, \$\phi 10\$, \$\phi 12\$, \$\phi 14\$, \$\phi 16\$, \$\phi 20\$ Figures not to scale fischer injection system FIS VL Annex A 4 **Product description** Overview system components part 2; metal parts, injection adapter

1 451	e A5.1: Ma	terials ————————————————————————————————————					
Part	Designation		Material				
1	Injection cartridge		Mortar, hardener, filler				
		Steel	Stainless steel R	High corrosion resistant steel HCR			
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4: 2006+A1:2015	acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4: 2006+A1:2015			
2	Anchor rod	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 electroplated \geq 5 μ m, EN ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised \geq 40 μ m EN ISO 10684:2004+AC:2009 fuk \leq 1000 N/mm ² A ₅ > 8% fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\% \text{ fracture elongation}$	Property class 50 or 80 EN ISO 3506-1:2020 or property class 70 with f_{yk} = 560 N/mm ^{2;} 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² A ₅ > 8% fracture elongation			
3	Washer ISO 7089:2000	electroplated \geq 5 µm, EN ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised \geq 40 µm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014			
4	Hexagon nut	Property class 4, 5 or 8 acc. EN ISO 898-2:2012 electroplated ≥ 5 μm, EN ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	Property class 50, 70 or 80 acc. EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 50, 70 or 80 acc. EN ISO 3506-2:2020 1.4565; 1.4529 EN 10088-1:2014			
5	fischer internal threaded anchor RG M I	Property class 5.8 ISO 898-1:2013 electroplated ≥ 5 µm, EN ISO 4042:2018/Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2020; 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529; EN 10088-1:2014			
6	Commercial standard screw or threaded rod for fischer internal threaded anchor RG M I	Property class 5.8 or 8.8; EN ISO 898-1:2013 electroplated ≥ 5 µm, EN ISO 4042:2018/Zn5/An(A2K) A ₅ > 8 % fracture elongation	Property class 5.8 or 8.8; Property class 70 EN ISO 898-1:2013 EN ISO 3506-1:2020 electroplated ≥ 5 μm, N ISO 4042:2018/Zn5/An(A2K) 1.4571; 1.4439; 1.4362;				
7	fischer filling disc	electroplated ≥ 5 μm, EN ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014			
8	Reinforcing bar EN 1992-1- 1:2004 and AC:2010, Annex C	Bars and de-coiled rods, class B f_{yk} and k according to NDP or NC f_{uk} = f_{tk} = $k \cdot f_{yk}$ (A ₅ > 8%)		04/NA			
fisc	her injection sy	stem FIS VL					

Specifications of intended use part 1 Table B1.1: Overview use and performance categories FIS VL with ... Anchor rod fischer internal threaded Reinforcing bar anchor RG M I Hammer drilling with standard drill all sizes bit Hammer drilling with hollow drill bit Nominal drill bit diameter (d₀) (fischer "FHD", Heller "Duster 12 mm to 35 mm Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max" uncracked all Tables: all Tables: all Tables: concrete sizes C1.1 sizes C2.1 sizes C3.1 Static and quasi C4.1 C4.1 C4.1 static loading, in C5.1 C6.1 C6.2 cracked φ 10 to _1) M8 to M20 C7.1 concrete C7.2 ф 20 C8.1 Seismic C₁ performance _1) category C2 dry or wet 11 all sizes concrete Use category water filled _1) 12 M 12 to M 30 all sizes hole 2) D3 (downward and horizontal and upwards (e.g. overhead)) Installation direction $T_{i,min}$ = -10 °C to $T_{i,max}$ = +40 °C Installation temperature for the standard variation of temperature after installation Temperature (max. short term temperature +80 °C; -40 °C to +80 °C range I max. long term temperature +50 °C) Service temperature (max. short term temperature +120 °C: Temperature -40 °C to +120 °C max. long term temperature +72 °C) range II 1) Performance not assessed ²⁾ Valid for shuttle cartridges with 360 ml, 825 ml and coaxial cartridges with 380 ml, 400 ml, 410 ml fischer injection system FIS VL Annex B 1 Intended use Specifications part 1

Specifications of intended use part 2

Base materials:

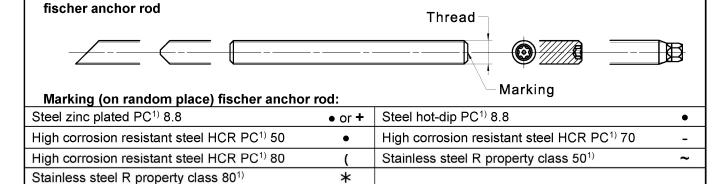
 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A 5 Table 5.1.

Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fastenings are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.


Installation:

- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening depth should be marked and adhered to installation
- · Overhead installation is allowed (necessary equipment see installation instruction)

fischer injection system FIS VL	
Intended use Specifications part 2	Annex B 2
40.00	0.00.04.470/00

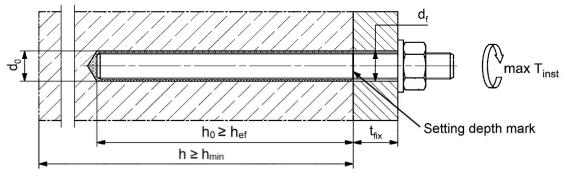


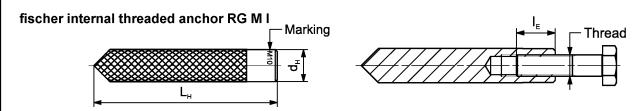
Table B3.1:	Table B3.1: Installation parameters for anchor rods											
Anchor rods			Thread	М6	M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole	diameter	d₀		8	10	12	14	18	24	28	30	35
Drill hole depth		h o						h₀ ≥ he	f			
Effective		$h_{\text{ef, min}}$		50	60	60	70	80	90	96	108	120
embedment depth		h _{ef, max}		72	160	200	240	320	400	480	540	600
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	40	45	55	65	85	105	125	140
Diameter of the	pre-positioned installation	df		7	9	12	14	18	22	26	30	33
clearance hole of the fixture	push through installation	d _f		9	12	14	16	20	26	30	33	40
Minimum thickness of concrete h		h _{min}		h _{ef} + 30 (≥100)				h _{ef} + 2d ₀				
Maximum installat	ion torque	max T _{inst}	[Nm]	5	10	20	40	60	120	150	200	300

Alternatively: Colour coding according to DIN 976-1: 2016

Installation conditions:

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

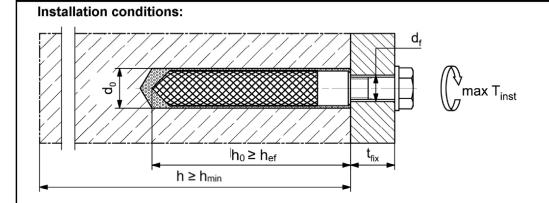
- Materials, dimensions and mechanical properties according to Annex A 5, Table A5.1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- · Setting depth is marked


Figures not to scale

fischer injection system FIS VL	
Intended use Installation parameters anchor rods	Annex B 3

¹⁾ PC = property class

Table B4.1: Installation parameters for fischer internal threaded anchors RG M I							
Internal threaded anchors F	RG M I	Thread	M8	M10	M12	M16	M20
Diameter of anchor	$d_{nom} = d_H$		12	16	18	22	28
Nominal drill hole diameter	d ₀	1 [14	18	20	24	32
Drill hole depth	h ₀] [$h_0 \ge h_{ef} = L_H$		
Effective embedment depth (h _{ef} = L _H)	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture	d _f		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}	1 [18	23	26	35	45
Minimum screw-in depth	I _{E,min}] [8	10	12	16	20
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	120



Marking: Anchor size e. g.: M10

Stainless steel → additional R; e.g.: M10 R

High corrosion resistant steel → additional HCR; e.g.: M10 HCR

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 5, Table A5.1

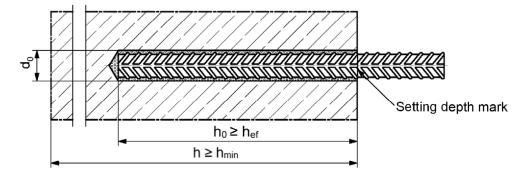
Figures not to scale

fischer injection system FIS VL

Intended use
Installation parameters internal threaded anchors RG M I

Annex B 4

Table B5.1: Installation parameters for reinforcing bars									
Nominal diameter of the bar		ф	8 ¹⁾	10 ¹⁾	12	21)	14	16	20
Nominal drill hole diameter	d_0		10 12	12 14	14	16	18	20	25
Drill hole depth	h_0		h ₀ ≥ h _{ef}						
Effective embedment death	$h_{\text{ef,min}}$		60	60	70		75	80	90
Effective embedment depth	h _{ef,max}		160	200	240		280	320	400
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	40	45	55		60	65	85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									


¹⁾ Both drill hole diameters can be used

Reinforcing bar

- The minimum value of related rib area f_{R,min} must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Nominal diameter of the bar, h_{rib} = rib height)

Installation conditions:

Figures not to scale

fischer injection system FIS VL

Intended use
Installation parameters reinforcing bars

Annex B 5

Table B6.1:	Para	mete	rs of t	he cle	eaning	j brus	h BS	(steel	brush	with	steel k	oristles	s)	
The size of the cle	eaning	brush r	efers t	o the d	rill hole	diame	ter							
Nominal drill hole	d₀		8	10	12	14	16	18	20	24	25	28	30	35

Nominal drill hole diameter	d₀	[mana]	8	10	12	14	16	18	20	24	25	28	30	35
Steel brush diameter BS	d b	[mm]	9	11	14	16	2	0	25	26	27	30	4	0

Table B6.2 Maximum processing time of the mortar and minimum curing time
(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

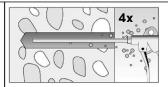
Temperature at	Maxir	num processino t _{work}	g time	Minimum curing time ¹⁾ t _{cure}			
anchoring base [°C]	FIS VL High Speed	FIS VL	FIS VL Low Speed	FIS VL High Speed	FIS VL	FIS VL Low Speed	
-10 to -5 ²⁾	>5 min	-	-	12 h	-	-	
> -5 to 0 ²⁾	5 min	>13 min	-	3 h	24 h	-	
> 0 to 5 ²⁾	5 min	13 min	>20 min	3 h	3 h	6 h	
> 5 to 10	3 min	9 min	20 min	50 min	90 min	3 h	
> 10 to 20	1 min	5 min	10 min	30 min	60 min	2 h	
> 20 to 30	-	4 min	6 min	-	45 min	60 min	
> 30 to 40	-	2 min	4 min	-	35 min	30 min	

¹⁾ In wet concrete or water filled holes the curing times must be doubled

fischer injection system FIS VL	
Intended use Cleaning brush (steel brush) Processing time and curing time	Annex B 6

²⁾ Minimal cartridge temperature +5°C

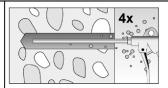
Installation instructions part 1


Drilling and cleaning the hole (hammer drilling with standard drill bit)

1

Drill the hole. Nominal drill hole diameter d_0 and drill hole depth h_0 see tables B3.1, B4.1, B5.1


Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand

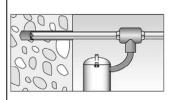

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

Brush the drill hole four times. For drill hole diameter ≥ 30 mm use a power drill. For deep holes use an extension. Corresponding brushes see **table B6.1**

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

Go to step 5


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

Check a suitable hollow drill (see **table B1.1**) for correct operation of the dust extraction

2

Use a suitable dust extraction system, e.g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data

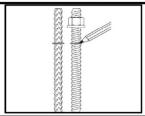
Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see tables B3.1, B4.1, B5.1

Go to step 5

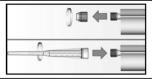
fischer injection system FIS VL

Intended use

Installation instructions part 1


Annex B 7

Installation instructions part 2


Preparing the cartridge

5

Mark the setting depth.

6

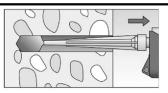
Remove the sealing cap

Screw on the static mixer (the spiral in the static mixer must be clearly visible)

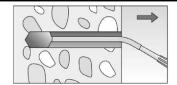
7

Place the cartridge into the dispenser

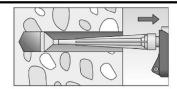
8



Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey


Go to step 9

Injection of the mortar


9

For $h_0 = h_{ef}$ fill approximately 2/3 of the drill hole with mortar. For $h_0 > h_{ef}$ more mortar is needed. Always begin from the bottom of the hole and avoid bubbles

For drill hole depth ≥ 150 mm use an extension tube

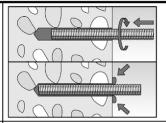
For overhead installation, deep holes ($h_0 > 250 \text{ mm}$) use an injection adapter

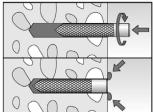
Go to step 10

fischer injection system FIS VL

Intended use

Installation instructions part 2


Annex B 8



Installation instructions part 3

Installation of anchor rods or fischer internal threaded anchors RG M I

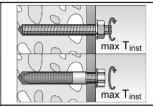
10



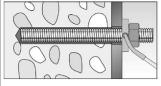
Only use clean and oil-free metal parts.
Push the anchor rod or fischer internal threaded
RG M I anchor down to the bottom of the hole,
turning it slightly while doing so.

After inserting the metal parts, excess mortar must be emerged around the anchor element.

For overhead installations support the metal part with wedges (e.g. fischer centering wedges) or fischer overhead clips.


For push through installation fill the annular gap with mortar

11


Wait for the specified curing time t_{cure} see table B6.2

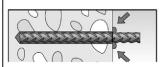
12

Mounting the fixture max T_{inst} see tables B3.1 and B4.1

Option

After the minimum curing time is reached, the gap between metal part and fixture (annular clearance) may be filled with mortar via the fischer filling disc. Compressive strength \geq 50 N/mm² (e.g. fischer injection mortars FIS VL, FIS HB, FIS SB, FIS V, FIS V Plus, FIS EM Plus).

ATTENTION: Using fischer filling disc reduces t_{fix} (usable length of the anchor)


Installation reinforcing bars

Only use clean and oil-free reinforcing bars. Push the reinforcement bar with the setting depth mark into the filled hole up to the setting depth mark. Recommendation:

Rotation back and forth of the reinforcement bar or the fischer rebar anchor makes pushing easy

10

When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole.

11

Wait for the specified curing time tcure see table B6.2

fischer injection system FIS VL

Intended use

Installation instructions part 3

Annex B 9

Anc	nor rod / standard threa	ded roc	ł		M6	M8	M10	M12	M16	M20	M24	M27	M30		
Cha	racteristic resistance to	steel fa	ailure	unde	r tens	ion load	ling ³⁾								
. s			4.8		8	15(13)	23(21)	33	63	98	141	184	224		
istic N _{RK.s}	Steel zinc plated	_	5.8		10	19(17)	29(27)	43	79	123	177	230	281		
		ropert	8.8	[kN]	16	29(27)	47(43)	68	126	196	282	368	449		
Characteristic esistance NRK	Stainless steel R and	Property class	50	נאון	10	19	29	43	79	123	177	230	281		
Cha esis	high corrosion	<u> </u>	70		14	26	41	59	110	172	247	322	393		
	resistant steel HCR		80		16	30	47	68	126	196	282	368	449		
Part	ial factors 1)														
_	Steel zinc plated		4.8						1,50						
용	Steel zinc plated	. ≰	5.8						1,50						
ial fa		Property class	8.8						1,50						
Partial factor	Stairliess steel R and	_ გ ე	50	'	2,86										
<u>с</u>	high corrosion resistant steel HCR		70 80	[1,50 ²⁾ / 1,87										
			1,60												
	racteristic resistance to	steel fa	ailure	unde	er shea	ar loadii	ng ³⁾								
with	out lever arm	I	4.0			0(0)	44(40)		- 00		0.5	440	405		
Characteristic esistance V ⁰ Rk,s	Steel zinc plated		4.8		4	9(8)	14(13)	20	38	59	85	110	135		
		ي بَيْ	5.8		6 8	1	17(16)	25	47 63	74 98	106 141	138 184	168 225		
Character resistance	0/:/	doi: 10 5 5 5 5 5 5 5 5 5	8.8 50	[kN]	 5	9	23(21) 15	34 21	39	61	89	115	141		
har; ista	Stainless steel R and high corrosion		70		7	13	20	30	55	86	124	161	197		
ပ စို	resistant steel HCR		80			15	23	34	63	98	141	184	225		
Ducti	lity factor		k ₇	[-]		1 .0			1,0			101			
	lever arm			LJ					.,,-						
σ			4.8		6	15(13)	30(27)	52	133	259	448	665	899		
္က ်	Steel zinc plated		5.8		7	19(16)	37(33)	65	166	324	560	833	1123		
Characteristic resistance Mork	,	perty	8.8	1 1	12	30(26)		105	266	519	896	1333	1797		
act		oper	50	[Nm]	7	19	37	65	166	324	560	833	1123		
Chara esistan	Stainless steel R and high corrosion	P 9	70		10	26	52	92	232	454	784	1167	1573		
ပ စို	resistant steel HCR				12	30	60	105	266	519	896	1333	1797		
Dant			80		12	30	80	100	200	519	090	1333	1797		
Part	ial factors 1)		4.8						1,25						
ō	Steel zinc plated		5.8	1 1					1,25						
, act -	•	erty ss	8.8	4 1					1,25						
Partial factor	Stainless steel R and	Property class	50	[-]					2,38						
[⊃] arl	high corrosion	<u>a</u> _	70					1.2	25 ²⁾ / 1,	56					
ш.	resistant steel HCR		80					.,-	1,33						
1) Ir	absence of other nationa	ı ıl regulati			1,33										

fischer injection system FIS VL

Performances

Characteristic resistance to steel failure under tension / shear loading of fischer anchor rods and standard threaded rods

Annex C 1

Table C2.1:	Characteristic resistance to steel failure under tension / shear loading of
	fischer internal threaded anchors RG M I

fischer internal	thread	ed anchors	RG M	I	M8	M10	M12	M16	M20			
Characteristic r	Characteristic resistance to steel failure under tension loading											
		Property	5.8		19	29	43	79	123			
Charact. resistance with	N ₋ .	class	8.8	[LNI]	29	47	68	108	179			
screw	$N_{Rk,s}$	Property class 70	R	[kN]	26	41	59	110	172			
			HCR		26	41	59	110	172			
Partial factors ¹⁾	ı											
		Property	5.8		1,50							
Partial factors		class	8.8	1,50								
Partial factors	γMs,N	Property class 70	R	[-]			1,87					
			HCR		1,87							

Characteristic resistance to steel failure under shear loading

						9			
Without lever a	rm								
		Property	5.8		9,2	14,5	21,1	39,2	62,0
Charact.	\ / 0	class	8.8	 	14,6	23,2	33,7	54,0	90,0
resistance with screw	V^0 Rk,s	Property	R	[kN]	12,8	20,3	29,5	54,8	86,0
		class 70	HCR		12,8	20,3	29,5	54,8	86,0
Ductility factor			k 7	[-]			1,0	•	
With lever arm									
		Property	5.8		20	39	68	173	337
Charact. resistance with	NAO	class	8.8] -[Nm]	30	60	105	266	519
screw	M ⁰ Rk,s	Property class 70	R	 Lixm]	26	52	92	232	454
SCIEW			HCR		26	52	92	232	454

Partial factors ¹)				
		Property	5.8		1,25
Dorticl factors		class	8.8		1,25
Partial factors	γMs,V	Property class 70	R	[-]	1,56
			HCR		1,56

¹⁾ In absence of other national regulations

neere injection eyetein i ie te	fischer	injection	system	FIS	VL
---------------------------------	---------	-----------	--------	-----	----

Performances

Characteristic resistance to steel failure under shear loading of fischer internal threaded anchor RG M I

Annex C 2

Table C3.1: Character reinforcir		tance	e to stee	I failure u	nder ten	sion / she	ar loading	g of				
Nominal diameter of the bar		ф	8	10	12	14	16	20				
Characteristic resistance to	steel failure	unde	r tension	loading								
Characteristic resistance N _{Rk,s} [kN] A _s · f _{uk²}												
Characteristic resistance to	steel failure	unde	r shear lo	ading								
Without lever arm												
Characteristic resistance	V^0 Rk,s	[kN]			k 6 ¹⁾ · A	$\mathbf{h}_{s} \cdot \mathbf{f}_{uk^{2}}$						
Ductility factor	k ₇	[-]			1	,0						
With lever arm		•										
Characteristic resistance	M^0 _{Rk,s}	[Nm]			1,2 · V	V _{el} ⋅ f _{uk} 2)						

¹⁾ In accordance with EN 1992-4:2018 section 7.2.2.3.1

fischer injection system FIS VL

Performances
Characteristic resistance to steel failure under tension / shear loading of reinforcing bars

Annex C 3

 k_6 = 0,6 for fasteners made of carbon steel with $f_{uk} \le 500 \text{ N/mm}^2$

^{= 0,5} for fasteners made of carbon steel with 500 < $f_{uk} \le 1000 \text{ N/mm}^2$

^{= 0,5} for fasteners made of stainless steel

²⁾ f_{uk} respectively must be taken from the specifications of the reinforcing bar

Table C4.1: Characteristi													-3
Size								All size	es				
Characteristic resistance to con	crete fa	_	ınder te	ensio	on	loading	_		<u> </u>				
Installation factor	γinst	[-]	4	2001			See an	nex C	5 to C	6			
Factors for the compressive str			rete > (C20/2	25								
	C25/30	-						1,05					
Increasing factor ψc for	C30/37	-						1,10					
cracked or uncracked	C35/45	-l [_] l	1,15										
concrete	C40/50		1,19										
$\tau_{Rk(X,Y)} = \psi_c \cdot \tau_{Rk(C20/25)}$	C45/55	4	1,22 1,26										
	C50/60							1,26					
Splitting failure													
Edge $\frac{h / h_{ef} \ge 2.0}{2.0 \times h / h_{ef} \ge 1.0}$	_							1,0 h _€	-				
distance $\frac{2,0 \times 11 \times 11}{100}$	_	[mm]	4,6 h _{ef} - 1,8 h										
h / h _{ef} ≤ 1,3 2,26 h _{ef}													
Spacing S _{cr,sp} 2 C _{cr,sp}													
Concrete failure								,,,					
Uncracked concrete	k ucr,N	[-]						11,0					
Cracked concrete K _{cr,N} /,/													
Edge distance C _{cr,N} [mm] 1,5 h _{ef}													
Spacing S _{cr,N} - 2 C _{cr,N}													
Factors for sustained tension lo	ading												
Temperature range [°C] 50 / 80 72 / 120													
Factor	ψ^0 sus	[-]			(0,74				0,8	7		
Characteristic resistance to con	crete fa	ailure u	ınder s	hear	r lo	ading							
Installation factor	γ inst	[-]						1,0					
Concrete pry-out failure													
Factor for pry-out failure	k 8	[-]						2,0					
Concrete edge failure													
Effective length of fastener in shear loading	lf	[mm]					m: min (m: min (00 mm)			
Calculation diameters	,												
Size			M6	M	В	M10	M12	M16	M20	M24	M2	7	M3
fischer anchor rods and standard threaded rods	d _{nom}	[1	6	8		10	12	16	20	24	27		30
fischer internal threaded anchors RG M I	d_{nom}	[mm]	_1)	12	2	16	18	22	28	_1)	_1)		_1)
Size (nominal diameter of the bar) \$\dagger\$ 10 12 14 16 20													
Reinforcing bar	d_{nom}	[mm]	8			10	12		14	16		2	20
1) Anchor type not part of this ass		nt											
Performances Characteristic resistance to concrete failure under tension / shear loading								Annex C 4					

Table C5.1:	Characteristic resistance to combined pull-out and concrete failure for
	fischer anchor rods and standard threaded rods in hammer drilled holes;
	uncracked or cracked concrete

uncracke	ed or d	racked	conci	rete							
Anchor rod / standard threa	ded rod		М6	M8	M10	M12	M16	M20	M24	M27	M30
Combined pull-out and cond	crete co	ne failure									
Calculation diameter	d	[mm]	6	8	10	12	16	20	24	27	30
Uncracked concrete											
Characteristic bond resistar	nce in u	ncracked	concr	ete C20	/25						
Hammer-drilling with standard	drill bit	or hollow	drill bit	(dry or	wet con	<u>crete)</u>					
Tem I: 50 °C / 80 °C		FN1/ 27	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature ————————————————————————————————————	$ au_{Rk,ucr}$	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammer-drilling with standard	drill bit	or hollow	drill bit	(water f	illed ho	<u>le)</u>			ı	ı	
Tem- I: 50 °C / 80 °C			_2)	_2)	_2)	9,5	8,5	8,0	7,5	7,0	7,0
perature ————————————————————————————————————	$ au_{Rk,ucr}$	[N/mm ²]	_2)	_2)	_2)	7,5	7,0	6,5	6,0	6,0	6,0
Installation factors	•	•									
Dry or wet concrete		r 1					1,0				
Water filled hole	γinst	[-]	_2)	_2)	_2)			1,2	2 ¹⁾		
Cracked concrete											
Characteristic bond resistar	nce in c	racked co	ncrete	C20/2	5						
Hammer-drilling with standard	drill bit	or hollow	drill bit	(dry or	wet con	<u>crete)</u>					
Tem- I: 50 °C / 80 °C		[N1/21	_2)	5,5	6,0	6,0	6,0	5,5	_2)	_2)	_2)
perature II: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_2)	4,5	5,0	6,0	6,0	5,0	_2)	_2)	_2)
Hammer-drilling with standard	drill bit o	or hollow c	drill bit (water fi	lled hole	<u>e)</u>					
Tem- I: 50 °C / 80 °C	_	[N]/rayas 21	_2)	_2)	_2)	5,0	5,0	4,5	_2)	_2)	_2)
perature ———— range II: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_2)	_2)	_2)	4,0	4,0	4,0	_2)	_2)	_2)
Installation factors											
Dry or wet concrete		r 1	_2)			1,0			_2)	_2)	_2)
Water filled hole	γ inst	[-]	_2)	_2)	_2)		1.2 ¹⁾		_2)	_2)	_2)

Valid for shuttle cartridges with 360 ml, 825 ml and coaxial cartridges with 380 ml, 400 ml, 410 ml

fischer injection system FIS VL

Performances
Characteristic resistance to combined pull-out and concrete failure for fischer anchor rod and standard threaded rods

Annex C 5

²⁾ Performance not assessed

Internal threaded a	nobou DC M		crete				iei uiille	d holes;					
	inchor RG IV	11		M8	M10	M	12	M16	M20				
Combined pull-out	and concre	te cor	ne failure										
Calculation diamete	r	d	[mm]	12	16	1	8	22	28				
Uncracked concret	te				-	•	-						
Characteristic bon	d resistance	in ur	ncracked	concrete C	20/25								
Hammer-drilling with	<u>standard dr</u>	ill bit c	or hollow o	drill bit (dry o	or wet cond	<u>crete)</u>							
Tem- I: 50 °C			[N]/ma.ma21	10,5	10,0	9,	5	9,0	8,5				
range II: 72 °C	Rk,ucr	[N/mm ²]	9,0	8,0	8,	0	7,5	7,0					
Hammer-drilling with	n standard dr	ill bit c	or hollow o	drill bit (wate	r filled hol	<u>e)</u>							
Tem- 1: 50 °C	/ 80 °C		2-	10,0	9,0	9,	0	8,5	8,0				
range II: 72 °C	/ 120 °C τ	Rk,ucr	[N/mm ²]	7,5	6,5	6,	5	6,0	6,0				
Installation factors													
Dry or wet concrete		0.6	[-]			1,	0						
Water filled hole		γinst	[-]			1,2	1)						
1) Valid for shuttle	cartridges w	ith 360	0 ml, 825	ml and coax	cial cartrido	ges with 380) ml, 400 i	ml, 410 ml					
	Characteris einforcin g				•								
Nominal diameter	of the bar		ф	8	10	12	14	16	20				
Combined pull-out	and concre	te coi	ne failure										
Calculation diamete	r	d	[mm]	8	10	12	14	16	20				
Uncracked concret	te												
Characteristic bond resistance in uncracked concrete C20/25													
Hammer-drilling with	n standard dr	ill bit c	or hollow o	drill bit (dry	or wet cond	crete)							
Tem- I: 50 °C perature			[N/mm ²]	11,0	11,0	11,0	10,0	10,0	9,5				
range II: 72 °C	/ 120 °C	Rk,ucr	[14/111111]	9,5	9,5	9,0	8,5	8,5	8,0				
Installation factor				Tange									

Dry or we	et co	ncrete	γinst	[-]			1	.0				
Cracked			Inter					, .				
Characte	Characteristic bond resistance in cracked concrete C20/25											
Hammer-	Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)											
Tem-	l:	50 °C / 80 °C	_	[N/mm ²]	_1)	3,0	5,0	5,0	5,0	4,5		
perature range	H:	72 °C / 120 °C	$ au_{Rk,cr}$		_1)	3,0	4,5	4,5	4,5	4,0		
Installati	Installation factor											
Dry or we	et co	ncrete	γinst	[-]	_1)	1,0						
		, , , , ,										

¹⁾ Performance not assessed

fischer injection system FIS VL

Performances
Characteristic resistance to combined pull-out and concrete failure for fischer internal threaded anchors RG M I and reinforcing bars

Annex C 6

Table C7.1: Displacements for anchor rods										
Anchor	rod	M6	M8	M10	M12	M16	M20	M24	M27	M30
Displacement-Factors for tension loading ¹⁾										
Uncracked concrete; Temperature range I, II										
$\delta_{\text{N0-Factor}}$	⊣[mm/(N/mm²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12
δ _{N∞-Factor}		0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14
Cracked concrete; Temperature range I, II										
$\delta_{\text{N0-Factor}}$	[mm/(N/mm²)]	_3)	0,12	0,12	0,12	0,13	0,13	_3)	_3)	_3)
$\delta_{\text{N0-Factor}}$		_3)	0,25	0,27	0,30	0,30	0,30	_3)	_3)	_3)
Displac	Displacement-Factors for shear loading ²⁾									
Uncracked or cracked concrete; Temperature range I, II										
δ V0-Factor	⊣ [mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07
δ∨∞-Factor		0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09

¹⁾ Calculation of effective displacement:

²⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$

 $\delta_{\mathsf{N}^{\infty}} = \delta_{\mathsf{N}^{\infty}\text{-}\mathsf{Factor}} \, \cdot \, \tau$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Factor}} \cdot V$

 τ = acting bond strength under tension loading

V = acting shear loading

Table C7.2: Displacements for fischer internal threaded anchors RG M I

Internal threaded anchor RG M I		M8	M10	M12	M16	M20			
Displacement-Factors for tension loading ¹⁾									
Uncracked concrete; Temperature range I, II									
$\delta_{ ext{N0-Factor}}$	[mama//N1/mama2)1	0,10	0,11	0,12	0,13	0,14			
δ _{N∞-Factor}	[mm/(N/mm ²)]	0,13	0,14	0,15	0,16	0,18			
Displacement-Factors for shear loading ²⁾									
Uncracked concrete; Temperature range I, II									
δv0-Factor	[mm/kN]	0,12	0,12	0,12	0,12	0,12			
δ∨∞-Factor		0,14	0,14	0,14	0,14	0,14			

¹⁾ Calculation of effective displacement:

²⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$

 $\delta_{\mathsf{N}^{\infty}} = \delta_{\mathsf{N}^{\infty}\text{-}\mathsf{Factor}} \, \cdot \, \tau$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Factor}} \cdot V$

 τ = acting bond strength under tension loading

V = acting shear loading

fischer injection system FIS VL

Performances

Displacements for anchor rods and fischer internal threaded anchors RG M I

Annex C 7

³⁾ Performance not assessed

Table C8.1: Displacements for reinforcing bars										
Nominal diameter φ of the bar		8	10	12	14	16	20			
Displacement-Factors for tension loading ¹⁾										
Uncracked concrete; Temperature range I, II										
$\delta_{\text{N0-Factor}}$	∃լmm/(N/mm²)]։	0,09	0,09	0,10	0,10	0,10	0,10			
δ _{N∞-} Factor		0,10	0,10	0,12	0,12	0,12	0,12			
Cracked	Cracked concrete; Temperature range I, II									
$\delta_{\text{N0-Factor}}$	-{[mm/(N/mm²)]	_3)	0,12	0,13	0,13	0,13	0,13			
δ _{N∞-Factor}		_3)	0,27	0,30	0,30	0,30	0,30			
Displace	Displacement-Factors for shear loading ²⁾									
Uncracked or cracked concrete; Temperature range I, II										
δ V0-Factor	⊣ [mm/kN]	0,11	0,11	0,10	0,10	0,10	0,09			
δ∨∞-Factor		0,12	0,12	0,11	0,11	0,11	0,10			

¹⁾ Calculation of effective displacement:

²⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$

 $\delta_{\mathsf{N}^{\infty}} = \delta_{\mathsf{N}^{\infty}\text{-}\mathsf{Factor}} \cdot \tau$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Factor}} \cdot V$

 τ = acting bond strength under tension loading

V = acting shear loading

fischer injection system FIS VL

Performances
Displacements for reinforcing bars

Annex C 8

³⁾ Performance not assessed